

Tetrahedron Letters 41 (2000) 8595-8599

TETRAHEDRON LETTERS

Strategy for contra-thermodynamic radical-chain epimerisation of 1,2-diols using polarity-reversal catalysis

Hai-Shan Dang and Brian P. Roberts*

Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK

Received 2 August 2000; revised 1 September 2000; accepted 7 September 2000

Abstract

Polarity-reversal catalysis by thiols has been applied to provide an efficient method for the conversion of appropriate 1,2-diols into less or similarly stable diastereoisomers by epimerisation of their acetonides under radical-chain conditions. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: radicals and radical reactions; catalysis; thiols; diols; isomerisation; carbohydrates.

We have reported previously that thiols catalyse selective radical-chain epimerisation of organic molecules at chiral tertiary CH centres that are activated by an attached oxygen atom.¹ For example, the readily available di-*O*-methyl-1,4:3,6-dianhydro-D-glucitol **1** is isomerised to the thermodynamically more stable, but rarer, di-*O*-methyl-1,4:3,6-dianhydro-L-iditol **2** when heated in refluxing octane in the presence of tri-*tert*-butoxysilanethiol² [(Bu^tO)₃SiSH, TBST] as catalyst, 2,2-di-*tert*-butylperoxybutane (DBPB) **3** as initiator and collidine.³ The mechanism of the epimerisation process is shown in Scheme 1 and the function of the thiol is to act as a protic polarity reversal catalyst⁴ to promote the thermoneutral transfer of hydrogen from the parent diastereoisomer **4** to the nucleophilic chain-carrying radical **5**. In the absence of thiol, the direct abstraction of hydrogen from **4** by **5** is slow because of the lack of favourable polar effects in the transition state.⁴

A potential drawback of this methodology as a procedure for the conversion of one diastereoisomer to a more desirable one is that the direction of change is necessarily always

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01502-1

^{*} Corresponding author.

8596

towards thermodynamic equilibrium. In this communication we present methods for the efficient conversion of a parent diastereoisomer into a less or similarly stable epimer; the general strategy is outlined in Scheme 2. The parent is first converted to a derivative, chosen such that the corresponding derivative of the desired epimer is significantly more stable. The parent derivative is then isomerised under radical-chain conditions to give an equilibrium mixture that favours the derivative of the epimer, followed by deprotection of the latter to give the required compound.

	unfavourable	
Parent		Epimer
Parent	derivatisation	Parent-D
Parent-D	favourable	Epimer-D
Epimer-D	deprotection	Epimer

Experiments with 1,2-diols and their derivatives serve both to validate and illustrate this approach. According to molecular mechanics calculations using the MMX forcefield,⁵ the most stable conformation of *trans*-cyclohexane-1,2-diol $\mathbf{6}$ is more stable than that of the *cis*-isomer 7 by 2.9 kJ mol⁻¹. Both isomers of the diol are readily converted to the corresponding acetonides 8 and 9 by treatment with excess 2,2-dimethoxypropane in the presence of an acidic ionexchange resin (Amberlyst-15). The *trans*-diastereoisomer is now destabilised with respect to the cis form by the extra strain present when a five-membered dioxolane ring is trans fused to the cyclohexane ring and molecular mechanics calculations indicate that the *trans*-acetonide is *less* stable than the cis form by 2.6 kJ mol⁻¹. Heating either the trans- or the cis-acetonide in refluxing octane (bath temperature 140–145°C) for 2.5 h in the presence of TBST (3×3 mol%), the peroxyketal DBPB⁶ ($3 \times 3 \text{ mol}\%$) and collidine ($1 \times 10 \text{ mol}\%$), as described previously, led to the same equilibrium mixture of isomers in which the *cis*-acetonide predominated to the extent of 95%.⁷ No detectable epimerisation takes place in the absence of the thiol. The acetonide 9 could be readily deprotected by treatment with excess methanol in the presence of Amberlyst-15 at room temperature to give the *cis*-diol in a pure state after one recrystallisation from ethyl acetate. The sequence of derivatisation, epimerisation and deprotection summarised in Scheme 3 thus provides an efficient procedure for the conversion of *trans*-cyclohexane-1,2-diol into the cis-isomer, based on the principle generalised in Scheme 1.

Methyl β -D-xylopyranoside 10 was converted into the acetonide 11 using the published method⁸ and subsequent methylation afforded 12,⁹ which is predicted by molecular mechanics

calculations to be less stable than both its C-3 epimer **13** and its C-2 epimer **14**, by 8.1 and 8.0 kJ mol⁻¹, respectively. However, attempted isomerisation of **12**, under the conditions used to epimerise **8** to **9**, failed and **12** remained unchanged. Under more forcing conditions, in refluxing nonane with di-*tert*-butyl peroxide (20 mol%) as the initiator and three additions of TBST (3×5 mol%) during 3 h, partial isomerisation of **12** took place to give one major product (30%), believed to be **14**,¹⁰ but the majority of **12** was unchanged. In marked contrast, the 4-deoxy analogue **15**¹¹ underwent epimerisation readily in refluxing octane under the conditions used to isomerise **8** and was converted essentially quantitatively into the C-3 epimer **16**.¹² The acetonide **15** is calculated to be less stable than **16** by 10.9 kJ mol⁻¹ and less stable than its C-2 epimer by 6.5 kJ mol⁻¹. Deprotection of **16** (Amberlyst-15, excess MeOH, room temperature) gave the free *cis*-diol, methyl 4-deoxy- β -D-*erythro*-pentopyranoside **17**.¹⁴

The large difference in the reactivity of **12** and **15** towards thiol-catalysed epimerisation at C-3 is probably the result of steric shielding of H-3 by the 4-methoxy group in the former, coupled with the deactivating polar effect of this methoxy group on abstraction of H-3 by the electrophilic thiyl radical.¹⁵

According to calculations using the MMX force-field, the most stable conformation of *meso*-1,2-diphenylethane-1,2-diol (*meso*-hydrobenzoin) **18** is marginally (by ca. 1 kJ mol⁻¹) more stable than that of the *dl*-form **19**. Although this result is of dubious quantitative significance,¹⁶ it does serve to confirm that the two diastereoisomers are of similar stability and that direct epimerisation of the *meso*-form is unlikely to provide a useful route to the *dl*-form,¹⁹ which is less easily prepared than *meso*-hydrobenzoin and is much more costly to obtain commercially. However, the *trans*-acetonide **21** derived from the *dl*-diol is calculated to be more stable by 12.1 kJ mol⁻¹ than the *cis*-acetonide **20** obtained from the *meso*-diol, implying that radical-chain epimerisation of **20** should provide an efficient means to convert the *meso*-diol to the *dl*-diol under mild neutral conditions.

In accord with this, treatment of **20** with 2,4,6-tris(trifluoromethyl)thiophenol **22** as catalyst²¹ and **3** as initiator in refluxing octane resulted in complete (\geq 98%) conversion to the *trans*-acetonide **21**, which could be deprotected (Amberlyst-15, excess MeOH, reflux) to give the free *dl*-diol **19**. The choice of thiol catalyst for epimerisation of **20** proved to be critical and no significant conversion to **21** was observed when, under otherwise identical conditions, the thiol **22** was replaced by TBST or *tert*-dodecanethiol. With thiophenol itself, conversion of **20** to **21** took place only to the extent of 75%. For epimerisation to take place efficiently *both* steps A and B of Scheme 1 must be sufficiently rapid to maintain the propagation cycle. These results indicate that the S–H bonds in TBST and *tert*-dodecanethiol are too strong for this requirement to be met for the intermediate benzylic radical (step B is too slow), while the S–H bond in thiophenol is a little too weak for step A to occur efficiently, even though the abstraction is from a benzylic CH group.

Acknowledgements

We are grateful to Dr. Abil Aliev for assistance with the NMR experiments to determine the structure of 14 and we acknowledge financial support from the EPSRC.

References

- 1. Dang, H.-S.; Roberts, B. P. Tetrahedron Lett. 1999, 40, 4271.
- 2. Herman, A.; Becker, B.; Wojnowski, W. Z. Anorg. Allg. Chem. 1979, 450, 178.
- 3. The role of the collidine (2,4,6-trimethylpyridine) is probably to act as a scavenger of acid resulting from reactions between the initiator and the thiol.¹
- 4. Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.
- 5. Calculations were carried out using PCMODEL version 7 (Serena Software, Bloomington, Indiana 47402-3076, USA); differences in MMX energies are reported.
- 6. Obtained from Peroxid-Chemie and handled as a 50% w/w solution in involatile aliphatic hydrocarbons (also available from Aldrich). The half-life of this peroxide is ca. 1 h at 125°C.
- 7. This equilibrium composition corresponds to a free energy difference of 9.8 kJ mol⁻¹ at 126°C (the bp of octane), significantly larger than the calculated MMX energy difference between the *cis* and *trans* isomers. Using the MMFF94 force field, available in PCMODEL, the calculated energy difference increases to 9.7 kJ mol⁻¹.
- 8. Helm, R. F.; Ralph, J.; Anderson, L. J. Org. Chem. 1991, 56, 7015.
- Compound 12: NMR (500 MHz for ¹H, CDCl₃ solvent, J in Hz); δ_H 1.44 (3H, s, Me), 1.45 (3H, s, Me), 3.28 (1H, dd, J=12.0 and 7.4, H-5A), 3.33 (1H, dd, J=9.3 and 7.4, H-2), 3.47 (3H, s, OMe), 3.52 (3H, s, OMe), 3.55–3.60 (2H, m, H-3 and H-5B), 4.10 (1H, dd, J=12.0 and 4.7, H-4), 4.53 (1H, d, J=7.4, H-1); δ_C 26.6, 26.8, 56.4, 57.8, 65.2, 76.7, 77.9, 80.2, 102.6 and 111.7.
- 10. The stereochemistry of 14 was deduced from COSY and NOESY ¹H NMR experiments.
- 11. Rabow, L. E.; Stubbe, J.; Kozarich, J. W. J. Am. Chem. Soc. 1990, 112, 3196.
- 12. The structure of 16 was confirmed by independent synthesis from methyl 2,3-*O*-isopropylidene- β -D-ribopyranoside¹³ by deoxygenation at the 4-position via reaction of the corresponding xanthate ROC(=S)SMe with triphenylsilane in dioxane at 60°C in the presence of di-*tert*-butyl hyponitrite initiator (see Cole, S. J.; Kirwan, N. J.; Roberts, B. P.; Willis, C. R. *J. Chem. Soc., Perkin Trans.* 1 1991, 103). Bp 48–50°C/0.05 mmHg, $[\alpha]_D^{22} = -106.1$ (*c* 4.8, CHCl₃). NMR (500 MHz for ¹H, CDCl₃ solvent, *J* in Hz); δ_H 1.36 (3H, s, Me), 1.52 (3H, s, Me), 1.89 (1H, d[q], *J*=14.6 and 4.0, H-4A), 2.01 (1H, dd[t], *J*=14.6, 9.8 and 4.9, H-4B), 3.46 (3H, s, OMe), 3.66 (1H, ddd, *J*=11.5, 9.8 and 3.7, H-5A), 3.77 (1H, d[t], *J*=11.5 and 4.7, H-5B), 3.86 (1H, [t], *J*=5.1, H-2), 4.38 (1H, [q], *J*=4.8, H-3) and 4.46 (1H, d, *J*=4.7, H-1); δ_C 25.9, 27.3, 27.9, 56.2, 58.9, 71.5, 74.7, 101.8 and 109.0. The use of [multiplet] indicates an apparent multiplet with line spacing corresponding to an average

coupling constant. MS [EI, 70 eV (%)]: 188 (M⁺, 3), 173 (32), 113 (33), 100 (55) and 59 (100). Found: C, 57.2; H, 8.7. $C_9H_{16}O_4$ requires C, 57.4; H, 8.6%.

- 13. Hughes, N. A.; Maycock, C. D. Carbohydr. Res. 1974, 35, 247.
- 14. Kinoshita, T.; Nakamura, N.; Miwa, T. Carbohydr. Res. 1982, 102, 298.
- Busfield, W. K.; Grice, I. D.; Jenkins, I. D.; Monteiro, M. J. J. Chem. Soc., Perkin Trans. 2 1994, 1071. Busfield, W. K.; Grice, I. D.; Jenkins, I. D. J. Chem. Soc., Perkin Trans. 2 1994, 1079. Roberts, B. P.; Steel, A. J. J. Chem. Soc., Perkin Trans. 2 1994, 2411.
- 16. Using either the MMX or MMFF94 force-field, the most stable conformation of the *dl*-diol is predicted to possess *gauche*-OH groups and *anti*-phenyl groups, while previous calculations using a different force-field that emphasises the stabilising interaction between *gauche*-phenyl groups¹⁷ predict that both the hydroxyl groups and the phenyl groups are *gauche* in the most stable conformation. The latter conformation is adopted in the crystalline state.¹⁸
- 17. Ivanov, P.; Pojarlieff, I. J. Mol. Struct. 1977, 38, 269.
- 18. Pennington, W. T.; Chakraborty, S.; Paul, I. C.; Curtin, D. Y. J. Am. Chem. Soc. 1988, 110, 6498.
- 19. It is possible to epimerise *meso*-hydrobenzoin to give the *dl*-diol in good yield under strongly basic and forcing conditions by treatment with solid potassium (but not sodium) hydroxide^{20a} or with potassium *tert*-butoxide in THF.^{20b} It seems likely that the alkoxide ion, probably paired with a potassium cation, is involved in these reactions.
- 20. (a) Collet, A. Synthesis 1973, 664. (b) Kawashima, M.; Nakayama; M.; Miyakawa, A. Nippon Kagaku Kaishi 1999, 697.
- 21. Dang, H.-S.; Roberts, B. P. J. Chem. Soc., Perkin Trans. 1 1998, 67.